730 research outputs found

    Space biology initiative program definition review. Trade study 6: Space Station Freedom/spacelab modules compatibility

    Get PDF
    The differences in rack requirements for Spacelab, the Shuttle Orbiter, and the United States (U.S.) laboratory module, European Space Agency (ESA) Columbus module, and the Japanese Experiment Module (JEM) of Space Station Freedom are identified. The feasibility of designing standardized mechanical, structural, electrical, data, video, thermal, and fluid interfaces to allow space flight hardware designed for use in the U.S. laboratory module to be used in other locations is assessed

    Space biology initiative program definition review. Trade study 3: Hardware miniaturization versus cost

    Get PDF
    The optimum hardware miniaturization level with the lowest cost impact for space biology hardware was determined. Space biology hardware and/or components/subassemblies/assemblies which are the most likely candidates for application of miniaturization are to be defined and relative cost impacts of such miniaturization are to be analyzed. A mathematical or statistical analysis method with the capability to support development of parametric cost analysis impacts for levels of production design miniaturization are provided

    Space biology initiative program definition review. Trade study 4: Design modularity and commonality

    Get PDF
    The relative cost impacts (up or down) of developing Space Biology hardware using design modularity and commonality is studied. Recommendations for how the hardware development should be accomplished to meet optimum design modularity requirements for Life Science investigation hardware will be provided. In addition, the relative cost impacts of implementing commonality of hardware for all Space Biology hardware are defined. Cost analysis and supporting recommendations for levels of modularity and commonality are presented. A mathematical or statistical cost analysis method with the capability to support development of production design modularity and commonality impacts to parametric cost analysis is provided

    Rat brain 5-HT_(1C) receptors are encoded by a 5-6 kbase mRNA size class and are functionally expressed in injected Xenopus oocytes

    Get PDF
    Injection of rat brain RNA into Xenopus laevis oocytes induces synthesis of receptors that show an electrophysiological response to bath application of serotonin. While there are at least 4 pharmacologically distinct subtypes of 5-HT binding sites in the rat brain, we find that the pharmacological characteristics of the predominant electrophysiologically active receptor synthesized in Xenopus oocytes are most consistent with those of the 5-HT_(1C) subtype. Additional electrophysiologically active 5-HT receptor types could not be detected. Injection of mRNA isolated from a number of rat brain regions shows that the choroid plexus is particularly enriched for 5-HT_(1C) mRNA. Oocytes injected with RNA isolated from this region respond 16 or 8 times more strongly to serotonin than do oocytes injected with RNA isolated from cortex or substantia nigra, respectively. In addition, by fractionation of rat brain mRNA through agarose gels, we have identified a single RNA size class of about 5–6 kbase that encodes this serotonin receptor

    Rat brain 5-HT_(1C) receptors are encoded by a 5-6 kbase mRNA size class and are functionally expressed in injected Xenopus oocytes

    Get PDF
    Injection of rat brain RNA into Xenopus laevis oocytes induces synthesis of receptors that show an electrophysiological response to bath application of serotonin. While there are at least 4 pharmacologically distinct subtypes of 5-HT binding sites in the rat brain, we find that the pharmacological characteristics of the predominant electrophysiologically active receptor synthesized in Xenopus oocytes are most consistent with those of the 5-HT_(1C) subtype. Additional electrophysiologically active 5-HT receptor types could not be detected. Injection of mRNA isolated from a number of rat brain regions shows that the choroid plexus is particularly enriched for 5-HT_(1C) mRNA. Oocytes injected with RNA isolated from this region respond 16 or 8 times more strongly to serotonin than do oocytes injected with RNA isolated from cortex or substantia nigra, respectively. In addition, by fractionation of rat brain mRNA through agarose gels, we have identified a single RNA size class of about 5–6 kbase that encodes this serotonin receptor

    The Morphology of IRC +10420's Circumstellar Ejecta

    Full text link
    Images of the circumstellar ejecta associated with the post-red supergiant IRC +10420 show a complex ejecta with visual evidence for episodic mass loss. In this paper we describe the transverse motions of numerous knots, arcs and condensations in the inner ejecta measured from second epoch {\it HST/WFPC2} images. When combined with the radial motions for several of the features, the total space motion and direction of the outflows show that they were ejected at different times, in different directions, and presumably from separate regions on the surface of the star. These discrete structures in the ejecta are kinematically distinct from the general expansion of the nebula and their motions are dominated by their transverse velocities. They are apparently all moving within a few degrees of the plane of the sky. We are thus viewing IRC +10420 nearly pole-on and looking nearly directly down onto its equatorial plane. We also discuss the role of surface activity and magnetic fields on IRC +10420's recent mass loss history.Comment: 16 pages, 6 figure

    Ca channels induced in Xenopus oocytes by rat brain mRNA

    Get PDF
    RNA was isolated from brains of 16-d-old rats and poly(A) samples were injected into stage V and VI oocytes. After allowing 2–5 d for expression, most oocytes were exposed to medium in which the K had been replaced by Cs for 24 hr prior to recording. Ba currents were usually measured in Cl-free Ba-methanesulfonate saline. I_(Ba) in noninjected oocytes was often undetectable, but ranged up to 50 nA (22 ± 4 nA, n = 21). In contrast, injected oocytes showed a peak I_(Ba) of 339 ± 42 nA (n = 33). The threshold for activation of I_(Ba) was -40 mV, with peak currents at +10 to +20 mV. After a peak, currents decayed to a nearly steady level along a single-exponential time course (τ = 650 ± 50 msec at +20 mV). The maintained current was 67 ± 6% (n = 9) of the early peak amplitude. A prepulse duration of 5 sec was needed to examine the inactivation of barium currents in injected oocytes. The inward I_(Ba) could be observed in BaCl₂ solutions at potentials positive to E_(Cl) and also in Na-free salines, indicating that neither Cl⁻ nor Na⁺ was carrying the inward current. Although I_(Ba) displayed voltage- independent blockade by Cd (50% inhibition at 6 µM), the peptide Ca channel antagonist, ω-CgTX (1 µM), and the organic Ca channel-blocking agents (verapamil, compound W-7, and nifedipine) were uniformly ineffective. No effects were observed with the dihydropyridine antagonist nifedipine (even at 10 µM, or when cells were held at -40 mV) or agonist Bay K-8644. However, I_(Ba) was enhanced via activation of protein kinase C with 4-beta-phorbol dibutyrate (PBT₂). In contrast, use of forskolin to activate protein kinase A did not alter I_(Ba). However, experiments in the presence of Cd revealed that forskolin decreased I_K. Ca channels produced by rat brain mRNA were thus in contrast to the nifedipine-sensitive, Bay K-8644- and forskolin-enhanced Ca channels observed after injection of rat heart mRNA (Dascal et al., 1986)

    Ca channels induced in Xenopus oocytes by rat brain mRNA

    Get PDF
    RNA was isolated from brains of 16-d-old rats and poly(A) samples were injected into stage V and VI oocytes. After allowing 2–5 d for expression, most oocytes were exposed to medium in which the K had been replaced by Cs for 24 hr prior to recording. Ba currents were usually measured in Cl-free Ba-methanesulfonate saline. I_(Ba) in noninjected oocytes was often undetectable, but ranged up to 50 nA (22 ± 4 nA, n = 21). In contrast, injected oocytes showed a peak I_(Ba) of 339 ± 42 nA (n = 33). The threshold for activation of I_(Ba) was -40 mV, with peak currents at +10 to +20 mV. After a peak, currents decayed to a nearly steady level along a single-exponential time course (τ = 650 ± 50 msec at +20 mV). The maintained current was 67 ± 6% (n = 9) of the early peak amplitude. A prepulse duration of 5 sec was needed to examine the inactivation of barium currents in injected oocytes. The inward I_(Ba) could be observed in BaCl₂ solutions at potentials positive to E_(Cl) and also in Na-free salines, indicating that neither Cl⁻ nor Na⁺ was carrying the inward current. Although I_(Ba) displayed voltage- independent blockade by Cd (50% inhibition at 6 µM), the peptide Ca channel antagonist, ω-CgTX (1 µM), and the organic Ca channel-blocking agents (verapamil, compound W-7, and nifedipine) were uniformly ineffective. No effects were observed with the dihydropyridine antagonist nifedipine (even at 10 µM, or when cells were held at -40 mV) or agonist Bay K-8644. However, I_(Ba) was enhanced via activation of protein kinase C with 4-beta-phorbol dibutyrate (PBT₂). In contrast, use of forskolin to activate protein kinase A did not alter I_(Ba). However, experiments in the presence of Cd revealed that forskolin decreased I_K. Ca channels produced by rat brain mRNA were thus in contrast to the nifedipine-sensitive, Bay K-8644- and forskolin-enhanced Ca channels observed after injection of rat heart mRNA (Dascal et al., 1986)

    Evidence for the involvement of more than one mRNA species in controlling the inactivation process of rat and rabbit brain Na channels expressed in Xenopus oocytes

    Get PDF
    The properties of rat and rabbit brain sodium (Na) channels expressed in Xenopus oocytes following either unfractionated or high-molecular- weight mRNA injections were compared to assess the relative contribution of different size messages to channel function. RNA was size-fractionated on a sucrose gradient and a high-molecular-weight fraction (7–10 kilobase) encoding the α-subunit gave rise to functional voltage-dependent Na channels in the oocyte membrane. Single- channel conductance, mean open time, and time to first opening were all similar to the values for channels following injection of unfractionated RNA. In contrast, inactivation properties were markedly different; Na currents from high-molecular-weight RNA inactivated with a several-fold smaller macroscopic inactivation rate and showed a steady-state voltage dependence that was shifted in the depolarizing direction by at least 10 mV relative to that for unfractionated RNA. Single-channel recording revealed that the kinetic difference arose from a greater probability for high-molecular-weight RNA induced channels to reopen during a depolarizing voltage step. Pooling all gradient fractions and injecting this RNA into oocytes led to the appearance of Na channels with inactivation properties indistinguishable from those following injection of unfractionated RNA. These results suggest that mRNA species not present in the high- molecular-weight fraction can influence the inactivation process of rat brain Na channels expressed in Xenopus oocytes. This mRNA may encode β-subunits or other proteins that are involved in posttranslational processing of voltage-dependent Na channels

    Almost Commuting Matrices, Localized Wannier Functions, and the Quantum Hall Effect

    Full text link
    For models of non-interacting fermions moving within sites arranged on a surface in three dimensional space, there can be obstructions to finding localized Wannier functions. We show that such obstructions are KK-theoretic obstructions to approximating almost commuting, complex-valued matrices by commuting matrices, and we demonstrate numerically the presence of this obstruction for a lattice model of the quantum Hall effect in a spherical geometry. The numerical calculation of the obstruction is straightforward, and does not require translational invariance or introducing a flux torus. We further show that there is a Z2Z_2 index obstruction to approximating almost commuting self-dual matrices by exactly commuting self-dual matrices, and present additional conjectures regarding the approximation of almost commuting real and self-dual matrices by exactly commuting real and self-dual matrices. The motivation for considering this problem is the case of physical systems with additional antiunitary symmetries such as time reversal or particle-hole conjugation. Finally, in the case of the sphere--mathematically speaking three almost commuting Hermitians whose sum of square is near the identity--we give the first quantitative result showing this index is the only obstruction to finding commuting approximations. We review the known non-quantitative results for the torus.Comment: 35 pages, 2 figure
    corecore